Level gauges reflex

These level gauges are used for measuring the level in a vessel. These can be used for maxinmum pressure of upto 150kg/cm2 and a maximum temperature of 400℃. Constructional features include 2.5 metre single piece construction with multiple glasses between process connections. A pair of auto shut off ball check valves in material of construction Carbon Steel or Stainless Steel and Polypropylene ad optional.

Working Principle

Transparent level gauge employ two transparent glasses and a liquid chamber. The liquid level gauge is indicated as a result of difference in the transparent properties of the two media. For water/sream aoolications, an illuminator is mounted on the rear side of the level gauge with its light rays deflected upward into the water column. This enables the observer to see the illuminater surface of the water as the light rays impinge on the surface of separation between water and steam are reflected back to the eye of the observer. For high temperature application mica shield is used.

How Liquid Level Gauge Work

Liquid level gauges are used to monitor and regulate levels of a particular free-flowing substance within a contained space. These substances are usually liquid, however liquid level gauge can also be used to monitor solids, such as powders. There are many different types of liquid level gauge, and they have several uses, both industrial and in the household for example.

Liquid level gauges are widely used industrially. Cars use liquid level gauge to monitor a variety of liquids, including fuel, oil and occasionally also specialist fluids such as power steering fluid. Liquid level gauge can also be found in industrial storage tanks, for slurries, and water level gauge can even be found in household appliances such as coffee machines. Basic liquid level gauge can be used to identify the point at which a liquid falls below a minimum or rises above a maximum level. Many liquid level gauge can detail the specific amount of liquid in a container relative to the minimum/maximum levels, to provide a continuous measurement of volume.

There are a number of different types of liquid level sensor used to detect the point level of a liquid. Some types of liquid level sensor use a magnetic float, which rises and falls with the liquid in the container. Once the liquid, and by extension, the magnet, reach a certain level, a reed magnetic switch is activated. Commonly, there is a switch towards the top and the bottom of the container, allowing detection of minimum and maximum levels of liquid. Many liquid level gauge also include a protective shield to protect the magnet from turbulence or interference from direct contact with the liquid.

Another common type of liquid level sensor is known as a Conductive sensor. Only liquids which conduct electricity can be used in this liquid level sensor. A Conductive Sensor includes a source of power, usually of a fairly low voltage. At least two electrodes are placed within the container. When a conductive liquid reaches a certain point, it will come into contact with both a longer and a shorter electrode, and thus complete a circuit and activate an internal switch.

Pneumatic sensors are also a fairly common occurrence with particularly hazardous liquids, or in systems where the use of electricity is not viable or possible. This is because the sensor itself does not come into direct contact with the liquid at all. The sensor detects the level of air between the liquid and the pneumatic sensor, then uses this to calculate the amount of liquid used to fill the remainder of the container. These types of liquid level gauges are also relatively cost-effective.

There are also other types of liquid level gauge which offer continuous measurement of liquids. Magnetostrictive liquid level gauges are similar in design to regular magnetic float sensors, yet the magnet level is measured using a magnetostrictive wire, which will react when its magnetic field is interrupted by the presence of the magnet. The exact point at which this interruption occurs can be determined by the distance between the bottom of the wire and the point of interference. Alternatives to this design include a magnetoresistive sensor, whereby an additional magnet is inserted onto the arm of the float, allowing accurate triangulation of the exact position of the magnets. This type of liquid level sensor is commonly used in conjunction with computer programs due to its accuracy. A non contact liquid level sensor features advanced signal processing technology in order to enable non contact liquid level detection.

This article comes from tc-fluidcontrol edit released

The Magnetic Level Gauge Working Principle: Simple and Effective

The magnetic level gauge working principle is widely used in level instrumentation. The interaction between float magnets inside the chamber and magnetic flags outside the chamber provide virtually maintenance-free, continuous level information. This type of level gauge doesn’t require power, making it ideal for a variety of applications across industries.

The magnetic level gauge working principle is based on the effects that one magnet has on nearby magnets. The mechanics are simple yet very effective, yielding reliable and repeatable level information for continuous monitoring and recording of fluid levels.

What Is the Magnetic level gauge Working Principle?

The working principle behind a magnetic level gauge is that the measuring instrument shares the same fluid — and therefore, the same level — as the vessel. The level gauge is attached to the vessel and connects directly with the fluid to be measured. Within the chamber is a float with a magnet assembly inside. This float rests on the fluid’s surface. As the fluid level rises or falls, so does the float. As the float moves up or down, the magnet assembly rotates a series of bi-color magnetic flags or flaps, changing the visual indicators mounted just outside the chamber from one color to the other.

Since the magnetic level gauge working principle relies on the interaction between magnets, these level measuring instruments do not need a power source. They are also virtually maintenance-free. An additional advantage: The indicator’s magnetic force can affect optional switches or transmitters mounted outside of the chamber. The colored flags are easy to see, even from a distance, and are paired with a scale for precise readings. As for any level instrumentation, the size and material of the float are chosen according to the media, temperature, pressure, and density of the process media.

This article comes from wika edit released